
Rust Safety Standard
Increasing the Correctness of unsafe Code

Benno Lossin <benno.lossin@proton.me>

September 7th 2024



1 What is Safety Documentation?

2 Why do we need Safety Documentation?

3 Status of Safety Documentation

4 Reasons and Goals for Standardization

5 Discussion

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 1 / 9



What is Safety Documentation?
• Requirements:

/// # Safety
///
/// `ptr` must have been returned by a previous
/// call to [`Arc::into_raw`]. Additionally, it
/// must not be called more than once for each
/// previous call to [`Arc::into_raw`].
pub unsafe fn from_raw(ptr: *const T) -> Arc<T>;

• Justifications:

let ptr = Arc::into_raw(arc);
// SAFETY: `ptr` comes from `Arc::into_raw` and
// we only call this function once with `ptr`.
let arc = unsafe { Arc::from_raw(ptr) };

all code self-authored or taken from the kernel with modifications to improve
presentability

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 2 / 9



Why do we need Safety Documentation?

C does not have it, why do we need it for Rust?
• Higher stakes:

• Safe Rust has the “no memory bugs guarantee∗”.
• But! unsafe code is a big asterisk!
• We want to uphold the no-memory-bugs privilege!

(that’s the strongest argument in favor of Rust)
• More complexity:

Correct unsafe code is more difficult to get right:
• Field drop order
• Fat pointers
• Lifetime annotations
• Ownership

• Opportunity to catch errors when writing safety documentation.

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 3 / 9



1 What is Safety Documentation?

2 Why do we need Safety Documentation?

3 Status of Safety Documentation

4 Reasons and Goals for Standardization

5 Discussion

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 4 / 9



Status of Safety Documentation

• Mandated by review since the very first patches,
• They are of course not perfect, things do slip through:
https://lore.kernel.org/rust-for-linux/
20240905-rust-lockdep-v1-1-d2c9c21aa8b2@gmail.com/

• One reason: miscommunication of what C requires.
• Almost all unsafe blocks and functions have safety documentation,
• Will soon enable a clippy lint:
https://lore.kernel.org/rust-for-linux/20240904204347.
168520-1-ojeda@kernel.org/

• But: inconsistent style!
• “ptr is valid, ...” vs “ptr is valid, non-null, ...”
• “struct invariants” vs “type invariants”

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 5 / 9

https://lore.kernel.org/rust-for-linux/20240905-rust-lockdep-v1-1-d2c9c21aa8b2@gmail.com/
https://lore.kernel.org/rust-for-linux/20240905-rust-lockdep-v1-1-d2c9c21aa8b2@gmail.com/
https://lore.kernel.org/rust-for-linux/20240904204347.168520-1-ojeda@kernel.org/
https://lore.kernel.org/rust-for-linux/20240904204347.168520-1-ojeda@kernel.org/


Status of Safety Documentation
• The style, wording and quality varies a lot:

/// # Safety
///
/// The provided pointer must point at a valid
/// struct of type `Self`.
#[inline]
unsafe fn raw_get_work(

ptr: *mut Self
) -> *mut Work<T, ID> {

let ptr = ptr as *mut u8;
// SAFETY: The caller promises that the
// pointer is valid.
unsafe { ptr.add(Self::OFFSET).cast() }

}

pub fn into_raw(self) -> *const T {
let ptr = self.ptr.as_ptr();
core::mem::forget(self);
// SAFETY: The pointer is valid.
unsafe { core::ptr::addr_of!((*ptr).data) }

}

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 6 / 9



Reasons and Goals for Standardization

• Goal: Always use the same wording for the same situation.
• Better documented requirements, justifications, invariants and

guarantees:
• Make authors write as little as possible,
• Give readers extensive explanations.

• Easier to write: No need to come up with wording yourself.
• Easier to learn: Only one way needs to be learned.
• Leave no room for misinterpretations: everyone knows the semantics

of the comments

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 7 / 9



How to get involved

• view the RFC: https://lore.kernel.org/rust-for-linux/
20240717221133.459589-1-benno.lossin@proton.me/

• Discuss with me on Zulip:
https://rust-for-linux.zulipchat.com/

• Join the LPC talk.
• And of course this discussion.

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 8 / 9

https://lore.kernel.org/rust-for-linux/20240717221133.459589-1-benno.lossin@proton.me/
https://lore.kernel.org/rust-for-linux/20240717221133.459589-1-benno.lossin@proton.me/
https://rust-for-linux.zulipchat.com/


Thanks for your Attention



Discussion

Benno Lossin <benno.lossin@proton.me> Rust Safety Standard September 7th 2024 9 / 9


	one
	What is Safety Documentation?
	Why do we need Safety Documentation?

	two
	Status of Safety Documentation
	Reasons and Goals for Standardization
	Discussion


